对驱动齿轮为何会卡在飞轮齿环中不回位,目前教材上的说法几乎都是错误的。
强制啮合的起动机其单向器与电枢轴之间是螺旋形花键动配合,可保证驱动齿轮与飞轮齿环全啮合,在强制啮合时,驱动齿轮与飞轮齿环只要啮合上一点点,驱动齿轮就被飞轮齿档住不转了,此时旋转的电枢轴在螺旋花键的作用下,把单向器往前推出,直至驱动齿轮碰到止推档圈,这时驱动齿轮才开始带动飞轮转动,也就是要在齿轮全啮合后才开始传递动力。
在此电枢轴的旋转有把单向器往前推的趋势,那么要使单向器后退的话,必须让单向器的转速超过电枢轴的转速,这就必须使发动机起动成功“着火”运转后,飞轮反带驱动齿轮,单向器才有了后退的条件。如果发动机没有起动成功,就不存在这个条件,驱动齿轮就卡在飞轮齿环中不回位。除非发动机已转的很灵活,靠惯性还能转一下。
驱动齿轮不回位后,将造成拨叉、电磁开关动铁芯不回位,从而造成触点打不开,起动机无法断电的现象。为了解决这个问题,在设计电磁开关时,就设置了断电间隙,有了断电间隙后,当驱动齿轮在啮合位置不回位时,电磁开关的动铁芯依然能回复一段距离而使触点打开,保证起动机能及时停下来。
断电间隙大都设置在动铁芯拉杆上,常见的是在拉杆上开长方形孔,拨叉端头插在孔中可来回移动一定距离,这个距离就是断电间隙,现在有不少动铁芯拉杆是圆杆两端大放拨叉的位置小,这个位置宽度一定大于拨叉宽度,其余量就是断电间隙,这种拨叉的上端呈丫状,有的起动机是把拨叉梢孔做成椭圆形的,作用相同。
起动发动机时,一旦起动失败,起动机又停不下来,原因不是开关触点烧结就是断电间隙没有了,断电间隙消失,一般都是维修下当、乱调整造成的。还有造成起动机不停机的原因,就是止推档圈坏了。
因此不要按目前教材上所谓调整起动机的方法去调整强制啮合的起动机
起动机解决了电磁开关吸引线圈既要提供足够的慢转电流又能保证断电释放的难题。因此保持了结构简单的特点,又保证达到真正的柔性啮合,还收到了降低成本的效果。
三菱型起动机的慢转电流受电磁开关吸引线圈匝数的限制,只能达到空载电流的1.4倍左右,而要真正达到柔性啮合,以国内的制造工艺水平,慢转电流要达到空载电流的2.5倍以上,这是通过N次试验及多年的实际应用探索得出的结论。那么增大慢转电流后是否又会发生铣齿呢?经试验把慢转电流增大到空载电流的3倍也不会铣齿,因此这种担心是多余的。
在保持电磁开关吸力不变的情况下,要增大吸引线圈的工作电流,势必要减少其匝数,而通常吸引线圈的匝数又不能无限减少。如采用依斯克拉与佩特莱的方案,电磁开关用铜量增加,成本上升。
但当把吸引线圈与保持线圈的首端分开后,吸引线圈的匝数就可任意变化了。因此可以根据慢转电流的要求,来确定它的匝数,而不增加电磁开关的吸力。经计算试验并实际使用,起动机的慢转电流完全满足要求,吸引线圈只需绕60匝左右即可,这样每只电磁开关可降低成本5-10元。
电磁开关中的二个线圈分开后,控制它就需要二路线了,简单的方法是采用双触点起动继电器,二个触点分别控制吸引线圈与保持线圈。
也可利用汽车上的起动继电器或钥匙开关的起动档来控制保持线圈,用起动机自带的大功率起动继电器来控制吸引线圈,具体接线是把电磁开关的保持线圈与大功率起动继电器的线圈并联,当钥匙开关转至起动档(ST),大功率起动继电器线圈与电磁开关保持线圈同时通电,继电器吸合触点接通,电磁开关吸引线圈通电,其工作电流使起动机慢转,M009T82572起动机尼桑,同时使电磁开关吸合,齿轮啮合后,电磁开关触点接通,吸引线圈被短接,并使起动机全功率运转。
新发明起动机的主要特征,就是把电磁开关中的吸引线圈与保持线圈的首端分开,从而使吸引线圈可提供保证起动机慢转的大电流,又能保证断电释放。
您好,欢迎莅临济南佐佑,欢迎咨询...